
Motor-ODM
Release 0.1.dev22

Kim Wittenburg

Apr 11, 2020

TABLE OF CONTENTS

1 Overview 1

2 Using ObjectId 3

3 API-Documentation 5
3.1 Package motor_odm . 5
3.2 Index . 9

Python Module Index 11

Index 13

i

ii

CHAPTER

ONE

OVERVIEW

Motor-ODM is a modern async Object-Document-Mapper for MongoDB. It is based on Pydantic and Motor. It
exclusively works with asyncio.

1

https://pydantic-docs.helpmanual.io
https://motor.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html#module-asyncio

Motor-ODM, Release 0.1.dev22

2 Chapter 1. Overview

CHAPTER

TWO

USING OBJECTID

If you are using Pydantic for more than your ODM (e.g. when using FastAPI and want to use the bson.ObjectId
class you need to tell Pydantic how to handle this class. You can either do this manually or use the handlers from
Motor-ODM. To do so all you need to do is make sure that motor_odm.document is imported before you define
your Pydantic models that use ObjectId.

3

https://fastapi.tiangolo.com
https://pymongo.readthedocs.io/en/stable/api/bson/objectid.html#bson.objectid.ObjectId
https://pymongo.readthedocs.io/en/stable/api/bson/objectid.html#bson.objectid.ObjectId

Motor-ODM, Release 0.1.dev22

4 Chapter 2. Using ObjectId

CHAPTER

THREE

API-DOCUMENTATION

Motor-ODM consists of several modules and classes all of which are documented in the full API reference. This
section highlights some classes in order to give you an overview where to start.

motor_odm.document.Document This is the base class for all documents defined using
Motor-ODM.

3.1 Package motor_odm

The motor_odm package contains all modules for Motor-ODM.

3.1.1 Submodules

Module motor_odm.document

This module contains the base class for interacting with Motor-ODM: Document. The Document class is the main
entry point to Motor-ODM and provides its main interface.

class motor_odm.document.DocumentMetaclass
Bases: pydantic.main.ModelMetaclass

The meta class for Document. Ensures that the Mongo class is automatically inherited.

class motor_odm.document.Document
Bases: pydantic.main.BaseModel

This is the base class for all documents defined using Motor-ODM.

A Document is a pydantic model that can be inserted into a MongoDB collection. This class provides an easy
interface for interacting with the database. Each document has an Document.id (named _id in MongoDB)
by default by which it can be uniquely identified in the database. The name of this field cannot be customized
however you can override it if you don’t want to use ObjectID values for your IDs.

classmethod all(db_filter: Query = None, **kwargs: Any)→ AsyncIterator[GenericDocument]
Returns multiple documents from the collection.

This method is filterable.

async classmethod batch_insert(*objects: GenericDocument)→ None
Inserts multiple documents at once.

It is preferred to use this method over multiple insert() calls as the performance can be much better.

5

https://pymongo.readthedocs.io/en/stable/api/bson/objectid.html#bson.objectid.ObjectId
https://docs.python.org/3/library/constants.html#None

Motor-ODM, Release 0.1.dev22

classmethod collection()→ motor.core.AgnosticCollection
Returns the collection for this Document.

The collection uses the codec_options, read_preference, write_concern and
read_concern from the document’s `Mongo` class.

async classmethod count(db_filter: Query = None, **kwargs: Any)→ int
Returns the number of documents in this class’s collection.

This method is filterable.

classmethod db()→ motor.core.AgnosticDatabase
Returns the database that is currently associated with this document.

If no such database exists this returns the database of the parent document (its superclass). If no
Document class had its use() method called to set a db, an AttributeError is raised.

document(*, include: Union[AbstractSetIntStr, DictIntStrAny] = None, exclude:
Union[AbstractSetIntStr, DictIntStrAny] = None)→ DictStrAny

Converts this object into a dictionary suitable to be saved to MongoDB.

classmethod find(db_filter: Query = None, **kwargs: Any)→ AsyncIterator[GenericDocument]
Returns multiple documents from the collection.

This method is filterable.

async classmethod get(db_filter: Query = None, **kwargs: Any) → Op-
tional[GenericDocument]

Returns a single document from the collection.

This method is filterable.

async insert()→ None
Inserts the object into the database.

The object is inserted as a new object.

async reload()→ None
Reloads a document from the database.

Use this method if a model might have changed in the database and you need to retrieve the current version.
You do not need to call this after inserting a newly created object into the database.

classmethod use(db: motor.core.AgnosticDatabase)→ None
Sets the database to be used by this Document.

The database will also be used by subclasses of this class unless they use() their own database.

This method has to be invoked before the ODM class can be used.

id: ObjectId = None
The document’s ID in the database.

By default this field is of type ObjectId but it can be overridden to supply your own ID types. Note that
if you intend to override this field you must set its alias to _id in order for your IDs to be recognized as
such by MongoDB.

6 Chapter 3. API-Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://pymongo.readthedocs.io/en/stable/api/bson/objectid.html#bson.objectid.ObjectId

Motor-ODM, Release 0.1.dev22

Module motor_odm.encoders

BSON encoders for common python types.

This module contains a collection of bson.codec_options.TypeEncoder subclasses for common python
types such as sets. Note that these encoders are provided as a convenience but are not used automatically. If you
want to use sets in your documents you have to provide the appropriate codec_options to the MongoDB client,
database, collection or function.

class motor_odm.encoders.SetEncoder
Bases: bson.codec_options.TypeEncoder

BSON support for python set.

This encoder encodes a set in form of a list. The list is not converted back into a set automatically but if
you are using the Document class this is done upon initialization of your model.

python_type
alias of builtins.set

transform_python
alias of builtins.list

class motor_odm.encoders.FrozensetEncoder
Bases: bson.codec_options.TypeEncoder

BSON support for python frozenset.

This encoder encodes a frozenset in form of a list. The list is not converted back into a set automatically
but if you are using the Document class this is done upon initialization of your model.

python_type
alias of builtins.frozenset

transform_python
alias of builtins.list

Module motor_odm.fixtures

This module contains patches for some frameworks to make Motor-ODM work as one would expect. Expect some
more or less ugly hacks here. . .

Note that all patches are applied automatically at import time.

motor_odm.fixtures.patch_fastapi()→ None
Patches the FastAPI framework to support models based on Pydantic. By default FastAPI routes handle Pydantic
models specially. This patch removes the special case for subclasses of Document.

Module motor_odm.helpers

This module contains various supporting functions that can be used independently of the Motor-ODM framework.
Some of these utilities can be found in similar form in other packages or frameworks and are adapted here to reduce
the number of dependencies.

motor_odm.helpers.inherit_class(name: str, self: Optional[T], *parents: T)→ T
Performs a pseudo-inheritance by creating a new class that inherits from self and parents. This is useful to
support intuitive inheritance on inner classes (typically named Meta).

Note that this method neither returns self nor any of the parents but a new type that inherits from both.

3.1. Package motor_odm 7

https://pymongo.readthedocs.io/en/stable/api/bson/codec_options.html#bson.codec_options.TypeEncoder
https://pymongo.readthedocs.io/en/stable/api/bson/codec_options.html#bson.codec_options.TypeEncoder
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://pymongo.readthedocs.io/en/stable/api/bson/codec_options.html#bson.codec_options.TypeEncoder
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://fastapi.tiangolo.com
https://docs.python.org/3/library/stdtypes.html#str

Motor-ODM, Release 0.1.dev22

Parameters

• name – The name of the newly created type.

• self – The primary base class (fields in this class take preference over the parents’
fields.

• parents – The secondary base classes. Field preferences are determined by the order of
the parent classes.

Returns A new type inheriting from self and parents.

motor_odm.helpers.monkey_patch(cls: Union[type, module], name: Optional[str] = None) →
Callable[[C], C]

Monkey patches class or module by adding to it decorated function. Anything overwritten can be accessed via
a .original attribute of the decorated object.

Parameters

• cls – The class or module to be patched.

• name – The name of the attribute to be patched.

Returns A decorator that monkey patches cls.name and returns the decorated function.

Module motor_odm.query

This module contains functions for building MongoDB queries.

motor_odm.query.create_query(db_filter: Query = None, **kwargs: Any)→ DictStrAny
Creates a MongoDB query from the specified arguments. This helper can be invoked in three ways (which can
also be combined):

Create a filter from keyword arguments. The arguments are transformed into a dict and returned verbatim.

>>> create_query(username="john")
{'username': 'john'}

For more complex cases you can also supply your own filter as a dict.

>>> create_query({"username": "john"})
{'username': 'john'}

You can also combine both methods.

>>> create_query({"username": "john"}, password="abc123")
{'password': 'abc123', 'username': 'john'}

One special case that is often required is looking up objects by their ID. You can do this by passing a value
for the ID as the first positional argument. This cannot be combined with other advanced filters but can accept
additional keyword arguments.

>>> create_query("john", password="abc123")
{'password': 'abc123', '_id': 'john'}

Parameters

• db_filter – Either a dict that is included as a filter or any other type that is used as an
_id query.

8 Chapter 3. API-Documentation

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Motor-ODM, Release 0.1.dev22

• kwargs – Filter arguments. Keyword arguments are preceeded by the db_filter pa-
rameter.

Returns A dict that can be used to filter a MongoDB collection.

3.2 Index

3.2. Index 9

https://docs.python.org/3/library/stdtypes.html#dict

Motor-ODM, Release 0.1.dev22

10 Chapter 3. API-Documentation

PYTHON MODULE INDEX

m
motor_odm, 5
motor_odm.document, 5
motor_odm.encoders, 7
motor_odm.fixtures, 7
motor_odm.helpers, 7
motor_odm.query, 8

11

Motor-ODM, Release 0.1.dev22

12 Python Module Index

INDEX

A
all() (motor_odm.document.Document class method),

5

B
batch_insert() (motor_odm.document.Document

class method), 5

C
collection() (motor_odm.document.Document

class method), 5
count() (motor_odm.document.Document class

method), 6
create_query() (in module motor_odm.query), 8

D
db() (motor_odm.document.Document class method), 6
Document (class in motor_odm.document), 5
document() (motor_odm.document.Document

method), 6
DocumentMetaclass (class in mo-

tor_odm.document), 5

F
find() (motor_odm.document.Document class

method), 6
FrozensetEncoder (class in motor_odm.encoders),

7

G
get() (motor_odm.document.Document class method),

6

I
id (motor_odm.document.Document attribute), 6
inherit_class() (in module motor_odm.helpers), 7
insert() (motor_odm.document.Document method), 6

M
module

motor_odm, 5

motor_odm.document, 5
motor_odm.encoders, 7
motor_odm.fixtures, 7
motor_odm.helpers, 7
motor_odm.query, 8

monkey_patch() (in module motor_odm.helpers), 8
motor_odm

module, 5
motor_odm.document

module, 5
motor_odm.encoders

module, 7
motor_odm.fixtures

module, 7
motor_odm.helpers

module, 7
motor_odm.query

module, 8

P
patch_fastapi() (in module motor_odm.fixtures), 7
python_type (motor_odm.encoders.FrozensetEncoder

attribute), 7
python_type (motor_odm.encoders.SetEncoder at-

tribute), 7

R
reload() (motor_odm.document.Document method), 6

S
SetEncoder (class in motor_odm.encoders), 7

T
transform_python (mo-

tor_odm.encoders.FrozensetEncoder attribute),
7

transform_python (mo-
tor_odm.encoders.SetEncoder attribute),
7

U
use() (motor_odm.document.Document class method),

6

13

	Overview
	Using ObjectId
	API-Documentation
	Package motor_odm
	Index

	Python Module Index
	Index

